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Abstract

We study the propagation of waves across fixed mesh refinement boundaries in linear and nonlinear model equations

in 1-D and 2-D, and in the 3-D Einstein equations of general relativity. We demonstrate that using linear interpolation

to set the data in guard cells leads to the production of reflected waves at the refinement boundaries. Implementing

quadratic interpolation to fill the guard cells suppresses these spurious signals.
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1. Introduction

Wave propagation is an important phenomenon throughout all areas of physics, with applications
typically involving multiple spatial and temporal scales. In numerical modeling of such problems, one

strategy for dealing with the disparity in spatial and temporal scales is the use of a nonuniform or adaptive

computational mesh. In this case waves can cross mesh refinement boundaries as they propagate through

the computational domain. This paper focuses on interface conditions that will allow waves to travel

smoothly across fixed refinement boundaries, minimizing spurious reflections.
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The specific application that motivated this study is modeling the emission of gravitational waves from

astrophysical sources such as binary black hole and neutron star coalescences. Such systems are among the

most important sources for ground-based gravitational wave detectors such as LIGO and VIRGO [1,2], as
well as the planned space-based LISA mission [3]. The gravitational waves produced typically have

wavelengths �10–100 times the scales of their sources Numerical simulations of such systems must

therefore allow the signals to propagate from finely resolved regions around the sources into more coarsely

resolved regions in the wave zones. Since the waveforms must be computed at large distances from their

sources (i.e., effectively at infinity) for comparison with observations from gravitational wave detectors, the

simulation domains must be made as large as possible. This can be achieved by incorporating several levels

of successively coarser grids.

The propagation of gravitational waves is governed by the Einstein equations, which are a coupled set of
nonlinear partial differential equations [4]. These equations can be written in a variety of ways, but current

practice in numerical relativity favors the use of the so-called BSSN formalism [5,6]. In this formalism, the

Einstein equations are written as a system of quasi-linear equations with first-order time derivatives and

second-order spatial derivatives. In this paper we restrict our analysis to the ‘‘iterated Crank–Nicholson’’

update scheme, which is a second order accurate, explicit finite difference method that is currently in

widespread use in the relativity community. It should also be noted that we consider mesh refinement only

in space, not in time. In particular, for our present analysis we use a common timestep across the entire

computational domain.
Adaptive mesh refinement (AMR) was first applied in numerical relativity to study critical phenomena in

the 1-D collapse of a scalar field to form a black hole [7]. An early 3-D application focussed on evolving a

single black hole [8]; this was followed by the use of fixed mesh refinement (FMR) to evolve a short part of a

binary black hole evolution [9]. AMR was also employed to follow the propagation of gravitational waves

through spacetime, first using a single model equation that describes perturbations of a non-rotating black

hole [10] and later in the 3-D Einstein equations [11], and to study inhomogeneous cosmological models

[12]. In these AMR studies the refinement and derefinement conditions were generally tuned so that the

gravitational waves remained within the finely resolved regions.
In this paper, we address the challenge of evolving gravitational wave signals across mesh refinement

boundaries using FMR. Success in this endeavor is an essential component of gravitational wave source

modeling, due to the large disparity in the scales of the sources and the waves. Our challenge amounts to

choosing a prescription for coupling adjacent grid blocks when the blocks have different resolutions. Grid

blocks are coupled through their guard cells, which must be filled using data from the blocks� interior cells.
In hydrodynamics codes it is common practice to use a linear interpolation scheme for guard cell filling,

with a possible adjustment for flux conservation across the interface between blocks [13–15]. We have found

that this prescription is not adequate for the BSSN formulation of the Einstein equations. In particular,
linear guard cell filling leads to unacceptably large reflections and distortions of the gravitational waves as

they propagate from fine grid blocks to coarse grid blocks. Our solution to this problem is to use a guard

cell filling procedure with quadratic-order accuracy orthogonal to the coarse–fine grid interface. The need

for quadratic order guard cell filling has been previously demonstrated for elliptic boundary value problems

with second order derivatives in [16,17]. With this prescription spurious wave reflections and distortions are

reduced dramatically.

Given the complexity of the full system of Einstein equations, we have chosen to analyze first a set of

model wave equations in 1-D and 2-D that mimic some of the properties of the Einstein equations, as
expressed in BSSN form. These simplified test beds have proved essential to understanding and correcting

the problems that arise in the propagation of waves across mesh refinement boundaries. Since the solution

we uncovered using these model equations has proved effective in curing the difficulties encountered in the

Einstein equations, we expect this work to be useful across a broad range of related wave propagation

problems.
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2. Linear wave equation in 1-D: evolution on a uniform grid

The linear wave equation in 1-D is generally written in the form

o2/
ot2

¼ o2/
ox2

; ð1Þ

where / ¼ /ðx; tÞ. Introducing the auxiliary variable Pðx; tÞ, we can cast Eq. (1) in a form that uses only

first time derivatives:

o/
ot

¼ P; ð2Þ
oP
ot

¼ o2/
ox2

: ð3Þ

In this section, we examine the system of Eqs. (2) and (3) to understand the interface conditions needed

for smooth propagation of waves across mesh refinement boundaries. In later sections, these conditions are
applied to nonlinear and multidimensional wave equations.

2.1. Discretization

For the spatial discretization of Eqs. (2) and (3), we take the data to be defined at the centers of the

spatial grid cells and use standard OðDxÞ2 centered spatial differences [18]. To advance this system of or-

dinary differential equations in time we use an OðDtÞ2 iterative method first suggested by Choptuik (see

[19]). In the numerical relativity literature, this explicit update scheme is referred to as ‘‘iterated Crank–
Nicholson’’. Each iteration has the form

/nþ1
i ¼ /n

i þ Dt Pi; ð4Þ
Pnþ1
i ¼ Pn

i þ
Dt

ðDxÞ2
ð/iþ1 � 2/i þ /i�1Þ ¼ Pn

i þ
Dt

ðDxÞ2
F ð/Þ; ð5Þ

where we use i to label the spatial grid, n to label the time steps, and /i, Pi to indicate intermediate values
calculated during the iteration process. Note that the familiar Crank–Nicholson algorithm is obtained by

setting /i and Pi equal to their time averages, ð/nþ1
i þ /n

i Þ=2 and ðPnþ1
i þPn

i Þ=2, respectively.
For two iterations, the specific steps are as follows. Begin by applying the discretization (4) and (5) with

/ ¼ /n, P ¼ Pn to calculate a first approximation to /nþ1 and Pnþ1:

ð1Þ/nþ1
i ¼ /n

i þ Dt Pn
i ; ð6Þ
ð1ÞPnþ1
i ¼ Pn

i þ
Dt

ðDxÞ2
F ð/nÞ: ð7Þ

Average these new values with those at the starting time level n to get new values for / and P:

ð1Þ/i ¼ 1
2

ð1Þ
/nþ1

i

�
þ /n

i

�
ð8Þ
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ð1ÞPi ¼ 1
2

ð1Þ
Pnþ1

i

�
þPn

i

�
: ð9Þ

Now perform a second iteration. Again applying (4) and (5) we find a second approximation to /nþ1 and
Pnþ1:

ð2Þ/nþ1
i ¼ /n

i þ Dt ð1ÞPi; ð10Þ
ð2ÞPnþ1
i ¼ Pn

i þ
Dt

ðDxÞ2
F ðð1Þ/Þ: ð11Þ

Averaging again with the values at level n yields

ð2Þ/i ¼ 1
2

ð2Þ/nþ1
i

�
þ /n

i

�
; ð12Þ
ð2ÞPi ¼ 1
2

ð2ÞPnþ1
i

�
þPn

i

�
: ð13Þ

A final update is carried out using these twice-iterated values:

/nþ1
i ¼ /n

i þ Dt ð2ÞPi; ð14Þ
Pnþ1
i ¼ Pn

i þ
Dt
Dx2

F ðð2Þ/Þ: ð15Þ

Clearly this algorithm can be carried out for any number of iterations. In the formal limit of an infinite

number of iterations, it yields the usual Crank–Nicholson scheme. However, a von Neumann stability

analysis shows that this iterative scheme is stable only when the number of iterations equals 2, 3, 6, 7, 10,

11, etc., and the Courant condition Dt6Dx is satisfied. This was shown by Teukolsky [19] for the advection

equation, but the conclusion holds as well for the wave equation in the form (2) and (3). Furthermore, the

accuracy of the iterative scheme is second order for any number of iterations. We must carry out at least

two iterations for stability, but continuing beyond two iterations does not reduce the truncation error. In

this paper we follow the common current practice in numerical relativity and carry out precisely two it-
erations for our tests.
2.2. Evolutions on a uniform grid

We first carried out uniform grid, or unigrid, evolutions of the discretized wave equation to provide a

basis for comparison with mesh refinement runs. The initial data for / is taken to be a Gaussian wave-

packet,

/ðx; t ¼ 0Þ ¼ A e�x2=r2 ; Pðx; t ¼ 0Þ ¼ 0; ð16Þ

with A ¼ 1 and r ¼ 0:25. The spatial domain extends from x ¼ �4 to x ¼ þ4. Time evolution of this data

produces two packets traveling with velocity v ¼ �1, each having amplitude A ¼ 0:5 and the same value of

r as the original packet. Here we will consider only the packet traveling to the right, in the region 06 x6 4.

Fig. 1 shows the evolution of this packet for two different resolutions. The coarser resolution is given by
H ¼ Dx ¼ 0:045 (dotted line), which has �10 zones across the width of the packet at half its maximum

amplitude. The solid line shows resolution h ¼ H=2 ¼ 0:0225. The time step is chosen to be Dt ¼ Dx=4 for a

given spatial resolution, Dx. In the last few panels of Fig. 1 one can see a slight separation between the two

curves. This is primarily due to numerical dispersion, which causes the phase velocities to deviate from



Fig. 1. The evolution of a Gaussian wavepacket on a uniform grid according to the linear 1-D wave equation is shown for two different

resolutions: H ¼ Dx ¼ 0:045 (dotted line) and h ¼ H=2 (solid line).
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unity. The phase velocity for a monochromatic wave propagating on a discrete, uniform grid is calculated

in Appendix A, with the result displayed in Eq. (A.11). According to this formula we expect the pulse

(which has wavelength �1) to propagate with speed �0.999 on the fine grid and speed �0.996 on the coarse

grid. This translates into a separation between the two pulses of about 0:01 at time t ¼ 3:37, which is the
approximate separation seen in the last panel of Fig. 1.

The time evolution of the absolute errors � � j/analytic � /numericalj is shown in Fig. 2. The dotted line

shows the errors �H for the coarse resolution H , and the solid line is 4� �h. Inspection of Fig. 2 shows that

the two curves are nearly identical, demonstrating the second-order convergence of these runs. Note that
Fig. 2. The evolution of the absolute errors � for the two runs in Fig. 1 is shown. The dotted line shows �H and the solid line 4� �h.
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the errors are approximately antisymmetric about the location of the pulse center. This is because the

dominant source of numerical error is dispersion, which has the principle effect of shifting each wave pulse

relative to the exact solution.
3. Implementation of mesh refinement

We use the Paramesh package [20] to implement the mesh refinement and parallelization in our codes.

All of our codes use cell-centered data. Paramesh works on logically Cartesian, or structured, grids and

carries out mesh refinement on grid blocks. The underlying mesh refinement technique is similar to that of

[21], in which grid blocks are bisected in each coordinate direction when refinement is needed. The grid
blocks all have the same logical structure, with nxb zones in the x-direction, and similarly for nyb and nzb.
Thus, refinement of a block in 1-D yields two child blocks, each having nxb zones but with zone sizes a

factor of two smaller than in the parent block. When needed, refinement can continue on the child blocks,

with the restriction that the grid spacing can change only by a factor of two, or one refinement level, at any

location in the spatial domain. Each grid block is surrounded by a number of guard cell layers that are used

in computing finite difference spatial derivatives near the block�s boundary. These guard cells must be filled

using data from the interior cells of the given block and the adjacent block.

Fig. 3 shows a section of a 1-D grid in the vicinity of an interlevel boundary between two neighboring
grid blocks. The fine grid covers the left half of the 1-D space, with cell-centered grid points labeled �1=2,
�3=2, etc. The coarse grid covers the right half with cell-centered grid points labeled 1/2, 3/2, etc. The fine

and coarse blocks are offset from one another for clarity of presentation. One layer of guard cells is shown,

with ‘‘G’’ marking the coarse grid guard cell and ‘‘g’’ the fine grid guard cell. These guard cells are filled

with data from neighboring blocks or, if the block forms part of the edge of the computational domain,

from appropriate outer boundary conditions.

Paramesh can be used in applications requiring AMR, FMR, or a combination of these. It handles the

creation of grid blocks, and builds and maintains the data structures needed to track the spatial rela-
tionships between blocks. It takes care of all inter-block communications and keeps track of physical

boundaries on which particular conditions are set, guaranteeing that the child blocks inherit this infor-

mation from the parent blocks. In a parallel environment, Paramesh distributes the blocks among the

available processors to achieve load balance, maximize block locality, and minimize inter-processor

communications.

For the work described in this paper, we are using FMR. For simplicity, we use the same timestep,

chosen for stability on the finest grid, over the entire computational domain. At the mesh refinement

boundaries, we use a single layer of guard cells as shown in Fig. 3; special attention is paid to the restriction
(transfer of data from fine to coarse grids) and prolongation (coarse to fine) operations used to set the data

in these guard cells, as discussed in the next subsection.
Fig. 3. An interlevel boundary between a coarse and fine grid in 1-D is shown. The coarse grid data points are marked with filled

diamonds and positive half integers, the fine grid data points are marked with filled circles and negative half integers. The coarse and

fine guard cells are marked with the corresponding open symbols and are denoted by ‘‘G’’ and ‘‘g’’, respectively.
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4. Linear wave equation in 1-D: evolutions with fixed mesh refinement

We now carry out evolutions of 1-D linear waves that encounter a change in the grid resolution at a fixed
location. For the gravitational wave applications in which we are interested, waves will be generated in a

finely resolved region and then travel out into more coarsely resolved regions. We thus start our initial wave

packet, given by Eq. (16), in a region of fine resolution h ¼ 0:0225 around the origin. The spatial domain is

again �46 x6 4. As before, the initial wave packet splits into two identical packets traveling in opposite

directions. Each of these packets then encounters a fixed refinement boundary, located at x ¼ �2:1, and
crosses into a region of coarser resolution H ¼ 2h. In the following discussions, we focus only on the region

xP 0.

We first use the default Paramesh linear interpolation to set the value of the data in the guard cells on
both the coarse and fine grids. With this prescription for guard cell filling, the coarse grid guard cell value of

any function f is given by linear interpolation,

fG ¼ 1
2
f�3=2

�
þ f�1=2

�
: ð17Þ

The value of f in the fine grid guard cell ‘‘g’’ is then given by a linear interpolation using coarse grid values,

fg ¼ ðfG þ 3f1=2Þ=4. Combined with Eq. (17), this gives

fg ¼ 1
8
f�3=2

�
þ f�1=2 þ 6f1=2

�
: ð18Þ

Note that this guard cell filling (GCF) procedure uses the points fG and f1=2 on the coarse grid to obtain

fg; this is in contrast to the direct approach, which uses the nearest points f�1=2 and f1=2 (cf. Eq. (23)). The
prescription (17) and (18) for GCF has errors of order h2 and is the default linear GCF method in Para-

mesh. We will refer to this procedure as linear GCF in this paper. The results of using linear GCF are

displayed in Fig. 4, which shows the time evolution of the absolute errors �. The dotted line shows the run

with linear interpolation at the interface boundary, and the solid line the results of a unigrid run at the fine
Fig. 4. The evolution of the absolute errors � is shown for a Gaussian packet crossing a fixed refinement boundary at x ¼ 2:1 with

linear (dotted line) and quadratic (dashed line) GCF. The solid line shows � for a unigrid run at the fine grid resolution.
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grid resolution. As the packet passes through this boundary, a reflected wave is generated propagating to

the left. The transmitted wave continues traveling to the right into the coarse grid region.

In large scale simulations of the Einstein equations with several levels of refinement, such spurious re-
flected waves can seriously degrade the quality of the results. Globally increasing the resolution until the

reflected waves reach acceptably small amplitudes is generally not possible in 3-D. We thus need a better

way to control the behavior of the signals crossing the interfaces.

To this end, we implemented direct quadratic interpolation (i.e., using the nearest 3 data points) to set

the data in the coarse and fine grid guard cells. Refer again to Fig. 3. For the fine grid guardcell ‘‘g’’,

quadratic interpolation yields [18]

fg ¼ 1
15

�
� 3f�3=2 þ 10f�1=2 þ 8f1=2

�
: ð19Þ

The coarse grid guard cell ‘‘G’’ is filled by matching first derivatives across the interface,

f1=2 � fG
H

¼ fg � f�1=2

h
; ð20Þ

where H ¼ 2h. This step, which ensures that the solution is smooth across the interface, can be viewed as

‘‘flux matching’’ where the gradient of f plays the role of the flux. By combining the derivative matching

condition with the formula for fg we find

fG ¼ 1
15

6f�3=2

�
þ 10f�1=2 � f1=2

�
: ð21Þ

This same result for fG can be obtained by direct quadratic interpolation. These formulae for GCF have

errors of order h3.
The absolute errors obtained when using quadratic interpolation are shown as the dashed line in Fig. 4.

Note that the reflected wave has been greatly reduced. Additional simulations, in which the size of the zones

is everywhere decreased by successive factors of two, show that with quadratic GCF the code is second-

order convergent. On the other hand, with linear GCF, the reflected pulse is first-order convergent. The
transmitted pulse also acquires first-order errors at the interface with linear GCF. As the transmitted wave

propagates through the coarse grid region, second-order errors due to dispersion and dissipation eventually

dominate over the first-order errors introduced at the interface. At that point, the transmitted pulse can

appear second-order convergent.

We also conducted tests using a one-dimensional periodic domain consisting of 20% fine grid and 80%

coarse grid. A wave pulse was allowed to cycle through the domain multiple times. These tests clearly show

that with quadratic guard cell filling, but not with linear guard cell filling, the code is second-order con-

vergent. We also used this test code to check the stability of the interface conditions. After thousands of
cycles of the wave pulse through the refined region, there were no signs of instability with either linear or

quadratic guard cell filling.

In Appendix A, we present a detailed analytic treatment of wave propagation across mesh refinement

boundaries that complements our numerical experiments. There we compute the reflection coefficient R and

transmission coefficient T for a monochromatic (single frequency) wave traveling on a grid with fixed mesh

refinement, for various methods of GCF. The wave travels from a fine grid region with resolution h into a

coarse grid region with resolution 2h. Fig. 5 shows the absolute value of the reflection coefficient jRj for
linear GCF (17) and (18) (dashed curve) and quadratic GCF (19)–(21) (solid curve). The dotted curve
shows the results for direct linear interpolation, defined by

fG ¼ 1
2
ðf�3=2 þ f�1=2Þ ð22Þ

for the coarse grid guard cell and
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Fig. 5. Absolute values of the reflection coefficient jRj for linear (dashed curve), quadratic (solid curve), and direct linear (dotted curve)

GCF for a wave with wavelength k crossing a single fixed mesh boundary. The resolution of the fine grid is h.

406 D.-I. Choi et al. / Journal of Computational Physics 193 (2004) 398–425
fg ¼ 1
3
ðf�1=2 þ 2f1=2Þ ð23Þ

for the fine grid guard cell. Direct linear interpolation, like the default linear GCF in Paramesh, has errors

of order h2. The curves of Fig. 5 are plotted as functions of the wavelength in the fine grid region divided by

the fine grid cell size h. Equivalently, we can interpret the horizontal-axis values as the number of fine grid

points per wavelength.

For our 1-D wave equation tests, the Gaussian packet behaves roughly like a wave of wavelength k � 1.

With h ¼ 0:0225, this corresponds to about k=h ¼ 44 fine grid points per wavelength. From Fig. 5 we see

that the reflection coefficient for linear interpolation is about jRj ¼ 0:02 while that for quadratic GCF is

jRj ¼ 0:0003. With an incident pulse amplitude of 0:5, we expect a reflected wave amplitude of about 0:01
for linear GCF and less than 0:0002 for quadratic GCF. This reflected pulse for the linear case is clearly

seen in Fig. 4.

The importance of minimizing spurious reflections from grid interfaces has been emphasized above. It is

equally important to minimize the distortion of waves that pass through a grid interface. The errors in the

transmitted wave pulse for linear and quadratic GCF are shown in the region x > 2:1 of the last few panels

of Fig. 4. Note that the errors for quadratic GCF are actually larger than the errors for linear GCF. This

surprising result is explained as follows. Observe that the errors for the two fixed mesh refinement simu-

lations, as well as for the unigrid run (solid curve), are approximately antisymmetric about the pulse center.
The errors in each case, as in the unigrid tests discussed in Section 2, are primarily due to dispersion.

Dispersion causes the wave pulses to fall behind the exact solution during propagation, giving rise to the

errors shown in Fig. 4. This effect is greater for the two runs with fixed mesh refinement because, beyond

x ¼ 2:1, the grid resolution is lower than for the unigrid run. However, with mesh refinement, the trans-

mitted pulse will also suffer a phase error which has the effect of artificially shifting the pulse along the x-
axis. In the case of linear GCF, there is a relatively large positive phase error in the transmitted wave. This

phase shift partially compensates for the negative shift caused by dispersion. As a result the size of the

largest peaks in the error for the transmitted wave, for the particular test shown in Fig. 4, is smaller with
linear GCF than with quadratic GCF.

Figs. 6 and 7 show the absolute value of the transmission coefficient jTj and the phase of the trans-

mission coefficient u ¼ arctanðIðTÞ=RðTÞÞ for a monochromatic wave, for linear, quadratic, and direct

linear interpolation. These graphs are obtained from the analysis in Appendix A. From Fig. 6 it is clear that
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at any wavelength (any resolution) the error in amplitude for the transmitted wave is smaller for quadratic
GCF than for linear GCF. 2 The dominant source of error for the transmitted wave is actually phase error,

shown in Fig. 7. The magnitude of this error for quadratic GCF is much smaller than that for linear GCF.

For a wavelength of k � 1, the linear guard cell filling produces a phase shift of about u ¼ 0:024, while
quadratic GCF gives a phase shift of about u ¼ �0:00028. For the tests shown in Fig. 4, the positive phase

for linear GCF translates into a shift along the positive x-axis of about dx ¼ ku=ð2pÞ � 0:004. With

quadratic GCF, the pulse is shifted in the negative direction, but by a much smaller amount dx � �0:00004.
Close inspection of the data for the two transmitted pulses shows that they indeed have a separation of

dx � 0:004. For linear GCF, this phase shift pushes the wave pulse forward and artificially compensates for
2 At low resolution, that is, for wavelengths less than about 28h, direct linear GCF has the smallest error for the transmitted wave

amplitude. However, as discussed in Appendix A, as the resolution is increased jTj is much closer to 1 for quadratic GCF. Also note

from Fig. 7 that direct linear GCF has large phase errors for the transmitted wave.
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the phase lag caused by dispersion. In general, there is no reason to expect the cumulative phase lag due to

dispersion to be close in magnitude (but opposite in sign) to the phase advance caused by transmission

through various grid interfaces. Thus, the relatively small transmission error seen in Fig. 4 for linear GCF
should be viewed as an accident of the particular example, not a generic result.
5. Nonlinear wave equation in 1-D

The next step in developing model equations to test these interface conditions is to add nonlinear

terms similar to those found in the Einstein equations. This produces the following nonlinear wave

equation

o2/
ot2

¼ o2/
ox2

þ d
o/
ot

� �2

þ e
o/
ox

� �2

; ð24Þ

where d and e are arbitrary constants. Again introducing the auxiliary variablePðx; tÞ, we get the first order
system

o/
ot

¼ P; ð25Þ
oP
ot

¼ o2/
ox2

þ d P2 þ e
o/
ox

� �2

: ð26Þ

Using the discretization introduced in Section 2.1, we have

/nþ1
i ¼ /n

i þ ðDtÞPi ð27Þ
Pnþ1
i ¼ Pn

i þ
Dt

ðDxÞ2
/iþ1

�
� 2/i þ /i�1

�
þ dðDtÞðPiÞ2 þ eðDtÞ /iþ1 � /i�1

2Dx

� �2

: ð28Þ

Eqs. (27) and (28) are updated following the steps given in (6)–(15).

We consider the case d ¼ �e ¼ 1 and set up an initial Gaussian wave packet centered on the origin using

the prescription given by Eq. (16), with Pðx; t ¼ 0Þ ¼ 0. This splits into two identical packets traveling in

opposite directions, each having amplitude A ¼ 0:38 and width r ¼ 0:25. We use the spatial domain

�46 x6 4 and set fixed refinement boundaries at x ¼ �2:1. The fine grid around the origin has resolution

h ¼ 0:0225 and the coarse grid regions have resolution H ¼ 2h. We focus on the region xP 0.
The results are shown in Fig. 8. Since we do not have an analytic solution for Eq. (24), we display the

actual solution and use unigrid runs for comparison. In addition, the vertical scale is chosen to zoom in on

the region around the base of the packet (i.e., near / ¼ 0), where the differences between the runs are the

most apparent. The thin solid line shows the solution for a unigrid run at the coarse resolution H , and the

thick solid line shows a unigrid run at the fine resolution h. Runs in which the packet encounters a re-

finement boundary are shown using a dotted line (linear GCF) and a dashed line (quadratic GCF). As we

saw before, a reflected wave is generated when the packet crosses the refinement boundary using linear

GCF; these effects are much less noticeable when using quadratic GCF. As in the case of the linear wave
equation, the code is second-order convergent when using quadratic GCF.



Fig. 8. The time evolution of the solution / to the nonlinear 1-D wave equation is shown. Unigrid runs are shown at the coarse

resolution H (thin solid line) and the fine resolution h ¼ H=2 (thick solid line). Runs in which the packet encounters a mesh refinement

boundary at x ¼ 2:1 are shown for linear interpolation (dotted line) and quadratic (dashed line) GCF.
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6. Wave equation in 2-D

As a next step, we consider the wave equation in 2-D. The evolution of cylindrically symmetric waves on

a 2-D Cartesian mesh provides an ideal test problem in which the signals cross mesh refinement boundaries

that are, in general, not perpendicular to their directions of propagation.

The 2-D model wave equation takes the form

o2/
ot2

¼ o2/
ox2

þ o2/
oy2

þ d
o/
ot

� �2

þ e1
o/
ox

� �2

þ e2
o/
oy

� �2

; ð29Þ

where d, e1, and e2 are constants. With the auxiliary variable Pðx; y; tÞ, we can write this in a form using

only first-order time derivatives:

o/
ot

¼ P; ð30Þ
oP
ot

¼ o2/
ox2

þ o2/
oy2

þ d ðPÞ2 þ e1
o/
ox

� �2

þ e2
o/
oy

� �2

: ð31Þ

Using the discretization introduced in Section 2.1, we have

/nþ1
ij ¼ /n

ij þ ðDtÞPij; ð32Þ
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Pnþ1
ij ¼ Pn

ij þ
Dt

ðDxÞ2
/iþ1;j

�
� 2/ij þ /i�1;j

�
þ Dt

ðDyÞ2
/i;jþ1

�
� 2/ij þ /i;j�1

�
þ dðDtÞðPijÞ2

þ e1ðDtÞ
/iþ1;j � /i�1;j

2Dx

 !2

þ e2ðDtÞ
/i;jþ1 � /i;j�1

2Dy

 !2

: ð33Þ

As before, Eqs. (32) and (33) are updated following the steps given in Eqs. (6)–(15).

In this section we consider two types of GCF, the default Paramesh linear order GCF and a quadratic

GCF scheme. The linear GCF is depicted in Fig. 9. First, each coarse grid guard cell (open diamond) is

filled as a linear combination of the surrounding fine grid points (solid circles). The fine grid guard cells

(open circles) are then filled using a linear combination of the surrounding coarse grid points (open and

solid diamonds).

Quadratic GCF is depicted in Fig. 10. As a first step, the coarse grid guard cells are filled from a linear

combination of the four surrounding fine grid guard cells. These values are only used at fine grid corners,
and will soon be overwritten. Linear interpolation of the coarse grid cells (solid diamonds) parallel to the

coarse–fine interface is used to compute intermediate values marked with open boxes in Fig. 10. These

intermediate values, along with the two fine grid cells (solid circles) directly across the interface, are then

used to obtain a quadratic fit for the fine grid guard cells marked with open circles.

Finally, as in the 1-D case, the coarse grid guard cells are filled by ‘‘flux matching’’, that is, matching

derivatives across the interface. Specifically, we consider the first derivative at the midpoint of Fig. 10, that

is, at the point midway between the coarse grid guard cell (open diamond) and the interior cell directly

across the interface (closed diamond). Derivative matching consists in equating the first derivative com-
puted from these coarse grid cells with the second-order accurate first derivative obtained from the four fine

grid cells (open and closed circles) that surround the midpoint.

The algorithm described here for quadratic GCF is similar to the one described by Martin and Cart-

wright [23]. The main difference is that we use linear interpolation of coarse grid values parallel to the

interface to obtain intermediate values (the open boxes in Fig. 10), whereas Martin and Cartwright use

quadratic interpolation. Also note that our algorithm can be applied without modification at fine grid

corners, where the corner of a coarse grid block is surrounded by fine grid blocks. Recall that in the first
Fig. 9. Paramesh default linear GCF in 2-D. Points on the coarse grid are denoted by diamonds, and points on the fine grid by circles.

First, the coarse grid guard cells (open diamonds) are filled by averaging the surrounding fine grid points. Then the fine grid guard cells

(open circles) are filled by taking linear combinations of the four surrounding coarse grid points.



Fig. 10. Quadratic GCF in 2-D. Coarse grid guard cells (open diamonds) are temporarily filled by averaging the surrounding fine grid

points. Intermediate values (open boxes) are obtained by linear interpolation of coarse grid values (solid diamonds) parallel to the

interface. Fine grid guard cells (open circles) are then filled from a quadratic fit using two fine grid points and one intermediate value.

Finally, the coarse grid guard cells are filled by matching the coarse and fine grid first derivatives across the interface.
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step, coarse grid guard cells are filled by linear restriction from the fine grid. This allows the interpolation

parallel to the interfaces to be carried out without the use of one-sided extrapolation. Finally, we point out
that GCF at fine grid corners is ambiguous, since there are different ways to deal with them; either of the

two coarse–fine interfaces that intersect at the corner can be used or interpolation using a stencil diagonal to

the interfaces can also be used. Note that only mixed derivatives are affected by the corners when using

centered differencing. In our code we do not treat the corners as special. At a corner our code naturally

selects one of the two interfaces and carries out a linear interpolation parallel to that face to obtain

intermediate values.

The initial data for our tests is taken to be a cylindrically symmetric wavepacket centered on the origin,

with

/ðx; y; t ¼ 0Þ ¼ Ae�ðx2þy2Þ=r2 ð34Þ

and Pðx; y; t ¼ 0Þ ¼ 0. We choose the amplitude A ¼ 1, and the width of the pulse by r ¼ 0:25. Quadrant

symmetry is imposed by using mirror-symmetry boundary conditions along x ¼ 0 and y ¼ 0. The com-

putational domain then covers the region 06 x6 4:3125 and 06 y6 4:3125. This packet is initially confined
to a fine grid region of resolution h ¼ 0:0225. As the packet expands, the wavefront crosses a fixed mesh
refinement boundary into a region of coarser resolution H ¼ 2h.

Setting d ¼ e1 ¼ e2 ¼ 0 in Eqs. (30) and (31) allows this packet to evolve under a linear equation. Fig. 11

shows the results of using quadratic GCF to set the values of the guard cell data. Here, / is shown at four

consecutive times. The expanding wavefront encounters mesh refinement boundaries at x ¼ 2:1 along the

x-axis and at y ¼ 2:1 along the y-axis. Note that the wave passes smoothly across the interface.

A comparison of unigrid and fixed refinement runs is shown in Fig. 12. Here, / is plotted along a portion

of the x-axis at a fixed time. The unigrid run (solid line) at the fine grid resolution shows the extended ‘‘tail’’

of the outgoing cylindrical wave front. The run with linear GCF (dotted line) shows a reflected wave
traveling back into the fine grid region as the wave passes through the refinement boundary. In the run with

quadratic GCF (dashed line), this spurious signal has been nearly eliminated.

Similar results are achieved when this wave packet is evolved according to a nonlinear equation,

d ¼ �e1 ¼ �e2 ¼ 1. The structure of the grid and location of the refinement boundary are the same as for

the 2-D linear equation. Fig. 13 displays the results of / along the x-axis at a fixed time. Notice that the run



Fig. 11. The evolution of / with a linear 2-D wave equation is shown at 4 consecutive times for a run using quadratic GCF to set the

data in the guard cells. Each of the grid blocks shown has 8� 8 zones.

Fig. 12. / is shown along a portion of the x-axis for the 2-D linear wave equation. The solid line shows the results of a unigrid run at

the fine grid resolution h ¼ 0:0225, the dotted line the results of a run with linear GCF, and the dashed line a run with quadratic GCF.
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Fig. 13. / is shown along a portion of the x-axis for the 2-D nonlinear wave equation. The solid line shows the results of a unigrid run

at the fine grid resolution h ¼ 0:0225, the dotted line the results of a run with linear GCF, and the dashed line a run with quadratic

GCF.
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with linear GCF (dotted line) shows a significant reflected wave. In contrast, the run with quadratic GCF

(dashed line) is close to the one with a uniform grid (solid line).
7. The Einstein equations in 3-D

We are now ready to apply the techniques developed in our model equations to the propagation of

gravitational waves in 3-D, which is governed by the vacuum (or source-free) Einstein equations. We write

these equations in terms of the ‘‘3 + 1’’ spacetime split [4], in which the initial data is specified on some 3-D

spacelike slice and then evolved forward in time. Within this framework, the metric takes the form

ds2 ¼ �a2dt2 þ gijðdxi þ bidtÞðdxj þ bjdtÞ: ð35Þ

We use units in which both the speed of light c ¼ 1 and the gravitational constant G ¼ 1. Lowercase Latin

letters are used to denote spatial indices, so that i; j ¼ 1; 2; 3. To simplify the notation throughout this

section, we use the summation convention: if any expression has one index as a superscript and the same

index as a subscript, summation over all values that index can take is implied [22]. The geometry of the

given spacelike slice is described by the 3-metric gij. The lapse function a governs the advance of proper
time across the surface, and the shift vector bi the motion of the spatial coordinates within the hypersurface

as the data is evolved forward in time. Both a and bi are freely-specifiable functions of space and time; for

the rest of this section, we use the choice a ¼ 1 and bi ¼ 0.

In the standard ADM spacetime split [4], the Einstein equations can be written in terms of gij and the

extrinsic curvature of the hypersurface Kij, where

Kij ¼ � 1

2

ogij
ot

: ð36Þ

Following current practice in numerical relativity, we use the BSSN formalism [5,6] in which the Einstein

equations are written in terms of conformal variables {w;K; ~ggij; ~AAij; ~CC
i} defined as follows:
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e4w � detðgijÞ1=3; ð37Þ
~ggij � e�4wgij; ð38Þ
K � gijKij; ð39Þ
~AAij � e�4wðKij � 1
3
gijKÞ; ð40Þ
~CCi � �oj~ggij: ð41Þ

Here ~ggij is the inverse of the conformal metric ~ggij. We use the notation oj � o=oxj for spatial derivatives.
In terms of these conformal variables, with the gauge choices a ¼ 1 and bi ¼ 0, the vacuum Einstein

equations become

ow
ot

¼ �1
6
aK; ð42Þ
o~ggij
ot

¼ �2~AAij; ð43Þ
oK
ot

¼ 1
3
K2 þ ~AAij

~AAij; ð44Þ
o~AAij

ot
¼ RTF

ij þ ~AAijK � 2~AAil
~AAl
j; ð45Þ
o~CCi

ot
¼ 2ð~CCi

jk
~AAkj � 2

3
~ggijojK þ 6~AAijojwÞ: ð46Þ

Here, ~CCi
jk are the connection coefficients associated with ~ggij, defined by

~CCk
ji ¼ 1

2
~ggmkðoi~ggmj þ oj~ggmi � om~ggjiÞ; ð47Þ

and

~AAij ¼ ~ggil~ggjk~AAlk; ~AAl
j ¼ ~ggli~AAij: ð48Þ

The superscript ‘‘TF’’ denotes the trace-free part of a tensor, so that RTF
ij ¼ Rij � gijR=3, where

R ¼ gmkRmk. The Ricci curvature tensor Rij is defined by

Rij ¼ okC
k
ij � ojC

k
ik þ Ck

mkC
m
ij � Ck

mjC
m
ik: ð49Þ

Although the set of Eqs. (42)–(46) is considerably more complicated than our model equations, there are

notable similarities. In particular, the conformal metric ~ggij plays the role of the function /, while Aij takes

the role of P. Looking at (47) and (49), we also see that the RTF
ij term in Eq. (45) contains second spatial

derivatives of ~ggij.
The lessons learned from the model equations in 1-D and 2-D can be applied successfully to the Einstein

equations in 3-D, as we demonstrate by evolving a weak gravitational wave. We use the analytic solution to

the linearized Einstein equations found by Teukolsky [24]; since this is given in closed form, we can then
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compare the numerical results directly with this analytic solution. We choose the even parity, L ¼ 2, M ¼ 0

solution, which is given by

ds2 ¼ �dt2 þ ð1þ AfrrÞdr2 þ ð2BfrhÞrdrdhþ ð2Bfr/Þr sin hdrd/þ 1
�

þ Cf ð1Þ
hh þ Af ð2Þ

hh

�
r2 dh2

þ ½2ðA� 2CÞfh/�r2 sin hdhd/þ 1
�

þ Cf ð1Þ
// þ Af ð2Þ

//

�
r2 sin2 hd/2: ð50Þ

Here,

A ¼ 3
F ð2Þ

r3

�
þ 3F ð1Þ

r4
þ 3F

r5

�
; ð51Þ
B ¼ � F ð3Þ

r4

�
þ 3F ð2Þ

r3
þ 6F ð1Þ

r4
þ 6F

r5

�
; ð52Þ
C ¼ 1

4

F ð4Þ

r

�
þ 2F ð3Þ

r2
þ 9F ð2Þ

r3
þ 21F ð1Þ

r4
þ 21F

r5

�
; ð53Þ
F ¼ F ðt � rÞ; F ðnÞ � dnF ðxÞ
dxn

� �
x¼t�r

; ð54Þ

where F is a generating function. We use the form

F ðxÞ ¼ Ax
x2

e�x2=x2

; ð55Þ

with two free parameters, A and x. Here we have specified an outgoing wave solution F ¼ F ðt � rÞ; an
ingoing wave solution can be obtained by using F ¼ F ðt þ rÞ.

For this even-parity, M ¼ 0 case, the angular functions fij are:

frr ¼ 2� 3 sin2 h; ð56Þ
frh ¼ �3 sin h cos h; ð57Þ
fr/ ¼ 0; ð58Þ
f ð1Þ
hh ¼ 3 sin2 h; ð59Þ
f ð2Þ
hh ¼ �1; ð60Þ
fh/ ¼ 0; ð61Þ
f ð1Þ
// ¼ �f ð1Þ

hh ; ð62Þ
f ð2Þ
// ¼ 3 sin2 h� 1: ð63Þ
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We present results for a gravitational wave crossing two fixed mesh refinement boundaries into regions

with successively coarser resolution. We start with a wave packet composed of a linear combination of one

initially ingoing and one outgoing wave, each having amplitude A ¼ 10�6 and width x ¼ 1. This packet is
centered on the origin in a fine grid region of resolution h ¼ 0:0416667. The successively coarser regions

have resolutions 2h and 4h, with the first refinement boundary at r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ 4:5 and the second at

r ¼ 9:0. To complete the initial data we take Kij ¼ 0 so that K ¼ 0 and ~AAij ¼ 0. Octant symmetry is imposed

by using mirror-symmetry boundary conditions along x ¼ 0, y ¼ 0, and z ¼ 0. The computational domain

covers the regions 06 x6 12 and similarly for y and z.
As the evolution proceeds, the outgoing waves travel directly toward the outer boundary of the grid. The

initially ingoing waves first travel toward the origin, then reflect and move outward. As the overall signal

propagates outward, it leaves flat spacetime behind.
Fig. 14 shows the evolution of these waves when linear GCF is used. The function gzz � 1 is plotted as a

function of x and y in the z ¼ 0 plane at 4 successive times. Note the presence of spurious reflected signals as

the waves pass through the fixed mesh boundaries. These problems are greatly reduced when quadratic

GCF is used, as shown in Fig. 15. A comparison of runs with linear (dotted line) and quadratic (dashed

line) GCF and the analytic solution (solid line) is shown in Fig. 16. The reflected waves are essentially

eliminated by the use of quadratic GCF.

Finally, Fig. 17 demonstrates the second-order convergence of the code by comparing the results of the

run in Fig. 15 with a run that differs only by having the size of the grid zones a factor of 2 larger
Fig. 14. Evolution of gravitational waves in the 3-D Einstein equations using linear GCF. gzz � 1 is plotted 1n the z ¼ 0 plane. Three

levels of resolution (h; 2h; 4h) are used, with h ¼ 0:0416667. Each of the grid blocks shown has 6� 6� 6 zones.



Fig. 16. The evolution of gzz � 1 is shown along the y-axis for the 3-D Einstein equations. The analytic solution (solid line) and

numerical solutions using linear (dotted line) and quadratic (dashed line) GCF are shown. The resolution levels are given by (h; 2h; 4h)
with h ¼ 0:0416667.

Fig. 15. Evolution of gravitational waves in the 3-D Einstein equations using quadratic GCF. gzz � 1 is plotted 1n the z ¼ 0 plane.

Three levels of resolution (h; 2h; 4h) are used, with h ¼ 0:0416667. Each of the grid blocks shown has 6� 6� 6 zones.
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Fig. 17. The L2 norm of the absolute error � is shown for two gravitational wave runs differing in resolution by a factor of 2

throughout. Both runs have two refinement boundaries and use quadratic GCF. The solid triangles connected by the solid line show �

for the run at higher overall resolution, and the solid boxes connected by the dotted line show 4� � for the run with lower overall

resolution.

418 D.-I. Choi et al. / Journal of Computational Physics 193 (2004) 398–425
throughout. Both runs use quadratic GCF. The L2 norm of the absolute error � is calculated over each

simulation domain, and plotted as a function of time. The solid triangles connected by the solid line show �
for the run in Fig. 15, and the filled boxes connected by the dotted line show the errors for the lower

resolution run multiplied by 4.
8. Summary

We have examined the propagation of waves across fixed mesh refinement boundaries, starting with

simplified linear and nonlinear model equations in 1-D and 2-D, and progressing to the 3-D Einstein

equations of general relativity. The numerical evolutions were carried out using centered spatial differences

and the explicit iterated Crank–Nicholson time update method, giving second-order accuracy. Our results

show that using linear GCF produces spurious reflected waves as the signals cross refinement boundaries,

and that these are greatly suppressed by using quadratic GCF. In particular, quadratic GCF preserves the
second-order convergence of the numerical evolutions. Our numerical results are complemented by a de-

tailed analytic treatment of waves crossing refinement boundaries in 1-D in Appendix A.

While quadratic GCF is straightforward to describe and implement in 1-D, the situation becomes more

complicated in 2-D. In particular, intermediate values parallel to the mesh refinement interface must be

calculated in the 2-D case. We have found that using linear interpolation to obtain these intermediate

values, combined with quadratic interpolation for the final values, maintains the second-order convergence.

The procedure used for quadratic GCF in 2-D generalizes in a straightforward manner to the 3-D case.

The techniques presented here appear to be robust in the sense that they continue to produce excellent
results as our test problems increase in complexity. Quadratic GCF successfully eliminates most of the

spurious reflected waves in both linear and nonlinear model equations in 1-D and 2-D. The 3-D Einstein

equations present a much larger and more complex system of equations. In the test case presented here, the
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evolution of a weak gravitational wave, quadratic GCF continues to perform well, even as the signals cross

two successive mesh refinement boundaries. We fully expect that these techniques will also yield excellent

results for strong gravitational waves, which activate the nonlinear terms in the Einstein equations. Such
evolutions require various technical differences in the gauge choices (a and bi) as well as in the formulation

of the initial data. We are currently working on such models, and will report on them elsewhere.
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Appendix A. Analysis of numerical wave propagation in 1-D

In this appendix, we present a more detailed analysis of the propagation of linear waves in 1-D with the

discretization described in Section 2. We begin by deriving some basic results for uniform grids (Section

A.1) and follow with a study of wave propagation across a fixed mesh refinement boundary (Section A.2).

Here, we do not address the issue of instabilities that might arise due to coupling between fine and coarse

meshes [25]. However, as noted in Section 4, our numerical tests show no signs of instability.

A.1. Wave propagation on a uniform mesh

We will employ matrix notation to facilitate the analysis in this Appendix. First, we collect the field

variables /, P into the column vector

V ¼ /
P

� �
: ðA:1Þ

Eqs. (2) and (3) can now be written as

oV
ot

¼ 0 1

o2=ox2 0

� �
V : ðA:2Þ

As usual V n
j will denote the vector of grid functions at timestep n and grid point j.The iterated Crank–

Nicholson method described in Section 2.1 is built from successive applications of the basic operator

Q ¼ 0 1

o2 0

� �
; ðA:3Þ

where o2V n
j � ðV n

jþ1 � 2V n
j þ V n

j�1Þ=Dx2. With two iterations, the update of the variables V n
j by one full

timestep is accomplished by the operator

M ¼ I þ Dt Q I
�

þ Dt
2
Q I
�

þ Dt
2
Q
��

: ðA:4Þ

The stability, dissipation, and dispersion properties are obtained by considering discrete plane wave

solutions,

V n
j ¼ W eixnDte�ikjDx; ðA:5Þ
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where W is a constant vector (independent of n and j). Inserting this ansatz into the update equation

V nþ1
j ¼ MV n

j , we find

eixDtW ¼ 1� 2K2 Dtð1� K2Þ
�4K2ð1� K2Þ=Dt 1� 2K2

� �
W ; ðA:6Þ

where

K � Dt
Dx

sinðkDx=2Þ: ðA:7Þ

Thus, W is an eigenvector with eigenvalue eixDt for the matrix that appears in Eq. (A.6). The eigenvalues are

obtained in the usual way with the result eixDt ¼ 1� 2K2 � 2iKð1� K2Þ. This is the dispersion relation

giving the complex frequency x as a function of wave number k. We can, without loss of generality,

consider only plane wave solutions (A.5) with positive frequency n > 0, where n ¼ RðxÞ is the real part of
x. Then the � sign in the dispersion relation must be set equal to the sign of the wave number k. The
dispersion relation then becomes

eixDt ¼ 1� 2K2 þ 2ijKjð1� K2Þ ðA:8Þ

and n ¼ RðxÞ is positive. The eigenvectors W corresponding to these eigenvalues are straightforward to

compute. Choosing the first component of W to be unity, we find

W ¼ 1

2ijKj=Dt

� �
: ðA:9Þ

We note for later reference that W e�ikjDx is an eigenvector of the basic operator Q with eigenvalue

2ijKj=Dt.
The finite difference scheme is unstable if the magnitude of the amplification factor, jeixDtj, is greater than

unity. From Eq. (A.8) we find that jeixDtj2 6 1 implies K2
6 1. This inequality will be satisfied for all wave

numbers k only if Dt6Dx. This is the Courant limitation on the timestep for the wave Eqs. (2) and (3)
discretized with twice-iterated Crank–Nicholson.The phase velocity is found from the real part of the

frequency n ¼ RðxÞ. From the dispersion relation (A.8), we find

nDt ¼ arcsin
2jKjð1� K2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4K4ð1� K2Þ

q
0
B@

1
CA: ðA:10Þ

The phase velocity is then

cðkÞ ¼ n
k
¼ nDt

2pa
k
Dx

; ðA:11Þ

where a � Dt=Dx is the Courant factor and k ¼ 2p=k is the wavelength. The dissipation is found from the

imaginary part of the frequency, g ¼ IðxÞ. Since the wave amplitude varies like / � e�gnDt, we see that the

amplitude drops by a factor

e�gDt ¼ eixDt


 

 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4K4ð1� K2Þ
q

ðA:12Þ

for each timestep.
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A.2. Wave propagation with FMR

Now consider a two-level refined mesh, with fine grid Dxf on the left and coarse grid Dxc on the right. We

will assume that the refinement jumps by a factor of 2, that is, Dxc ¼ 2Dxf . The mesh will be labeled as

shown in Fig. 3. Thus, V n
�1=2, V

n
�3=2, etc. are the fine grid functions and V n

1=2, V
n
3=2, etc. are the coarse grid

functions.

As a first step towards analyzing the wave reflection and transmission at the interface, we relate the wave

numbers in the coarse and fine grid regions. Consider a monochromatic solution that varies like / � einnDt

across the entire mesh. Specifically, we assume that the coarse and fine grid frequencies are the same,

nc ¼ nf , and that the coarse and fine grid time steps are the same, Dtc ¼ Dtf . From the dispersion relation,
Eq. (A.8), we can compute tanðnDtÞ in the coarse and fine grid regions and equate the results:

2jKcjð1� K2
cÞ

1� 2K2
c

¼ 2jKf jð1� K2
f Þ

1� 2K2
f

: ðA:13Þ

Here, Kc ¼ ðDt=DxcÞ sinðkcDxc=2Þ and similarly for Kf . This relation has the form f ðjKcjÞ ¼ f ðjKf jÞ where
jKcj and jKf j vary between 0 and 1. It is easy to show that the function f ðjKjÞ is monotonic and therefore

invertible. It follows that the only solution of Eq. (A.13) is

jKcj ¼ jKf j: ðA:14Þ

This equation shows that the coarse and fine grid wave numbers kc and kf are related by

kc ¼ � 2

Dxc
arcsin

Dxc
Dxf

sinðkfDxf=2Þ
� �

: ðA:15Þ

The two cases corresponding to the � sign indicate that the wave propagation direction on the coarse

and fine sides of the interface need not match. Thus, we can have a right moving wave in the coarse grid

region connected to both right moving and left moving waves in the fine grid region.

From the result (A.14) we see that the rate of dissipation (A.12) of a wave, governed by g ¼ IðxÞ, is the
same in the coarse and fine grid regions. We also see that the relative phase between the two components /
and P of the wave, Eq. (A.9), is the same in coarse and fine regions. The phase velocity (A.11), and hence

the amount of dispersion, differ in the coarse and fine grid regions, since the wave numbers kc and kf are not
equal.

According to Eq. (A.15) kc is real only for kfDxf 6 p=3, that is, for kf=Dxf P 6. If kf=Dxf < 6, then kc is
complex and the plane wave solution (A.5) will contain a spatial dependence in the coarse grid region that is

either exponentially damped or grows exponentially. Note that, although kc might be complex, Kc is real

(assuming kf is real) and equal to �Kf . It follows that, whether kc is real or complex, the Courant stability

condition jeixDtj2 6 1 is satisfied in the coarse grid region if it is satisfied in the fine grid region.

For the remainder of this appendix we will focus on the case of practical interest, where kf=Dxf P 6 and

kc is real. The plots in Figs. 5–7 have been restricted to kf=Dxf P 10 for clarity of presentation. Each of the

curves in those plots reaches a finite value at kf=Dxf ¼ 6.
A.2.1. Matching solutions

At this point we have shown that waves of frequency n have wave number kc on a coarse grid, wave

number kf on a fine grid, and that these values are related as in Eq. (A.15). We will now construct a solution

with frequency n that spans the entire non-uniform grid. To begin, consider the vector
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Vj ¼
W e�ikf jDxf þ Reikf jDxf
� �

; j < 0;

W Te�ikcjDxc
� �

; j > 0:

�
ðA:16Þ

We will show that for an appropriate choice of the coefficients R and T the vector Vj is an eigenvector of

the basic operator Q with eigenvalue 2ijKj=Dt. For points away from the interface, namely, the points

j6 � 3=2 and jP 3=2, this conclusion follows from our earlier observation that on a uniform grid W e�ikjDx

is an eigenvector of Q with eigenvalue 2ijKj=Dt. The same argument cannot be applied to the points 1=2
and �1=2 surrounding the interface because the stencil for the discrete derivative operator o2 appearing in

Q extends across the interface. Thus, when computing o2Vj for j ¼ �1=2, we must use guard cell

information.

In the main text, we discussed various choices for guard cell filling, such as the Paramesh linear GCF of

Eqs. (17) and (18) and the quadratic GCF of Eqs. (19)–(21). For the purpose of presenting the analysis, we

will focus instead on the direct linear GCF of Eqs. (22) and (23). In the present notation, these relations are

V n
G ¼ 1

2
V n
�3=2

�
þ V n

�1=2

�
; V n

g ¼ 1
3
V n
�1=2

�
þ 2V n

1=2

�
: ðA:17Þ

Now, for grid points that are not adjacent to the interface, the operator o2 takes the usual form,

o2V n
j ¼ ðV n

jþ1 � 2V n
j þ V n

j�1Þ=Dx2f ; j6 � 3=2;

ðV n
jþ1 � 2V n

j þ V n
j�1Þ=Dx2c ; jP 3=2:

�
ðA:18Þ

But for grid points adjacent to the interface, o2 must use guard cell values given by (A.17). Consequently,

we find

o2V n
�1=2 ¼ V n

g

�
� 2V n

�1=2 þ V n
�3=2

�
=Dx2f ¼ 2V n

1=2

�
� 5V n

�1=2 þ 3V n
�3=2

�.
3Dx2f
� �

ðA:19Þ

and

o2V n
1=2 ¼ V n

3=2

�
� 2V n

1=2 þ V n
G

�
=Dx2c ¼ 2V n

3=2

�
� 4V n

1=2 þ V n
�1=2 þ V n

�3=2

�.
2Dx2c
� �

ðA:20Þ

for o2 acting at grid points j ¼ �1=2.
We now impose the requirement that the vector Vj of Eq. (A.16) is an eigenvector of Q with eigenvalue

2ijKj=Dt at the points j ¼ �1=2 adjacent to the interface. Using the discretization (A.19) the relation
QV�1=2 ¼ ð2ijKj=DtÞV�1=2 yields

1
3
2/1=2

�
� 5/�1=2 þ 3/�3=2

�
¼ 2ijKj

af

� �2

/�1=2: ðA:21Þ

Here, /j is the first component of the ansatz vector Vj. Similarly, with the discrete operator (A.20), we find

that QV1=2 ¼ ð2ijKj=DtÞV1=2 implies

1
2
2/3=2

�
� 4/1=2 þ /�1=2 þ /�3=2

�
¼ 2ijKj

ac

� �2

/1=2: ðA:22Þ

These two equations can be solved for the two coefficients R and T. The result is

R ¼ 3E2
cE

2
f � E4

f � E2
cE

4
f � E6

f

1þ E2
f þ E2

cE
2
f � 3E2

cE
4
f

;

T ¼ Ecð3þ 2E2
f � 2E6

f � 3E8
f Þ=ð2EfÞ

1þ E2 þ E2E2 � 3E2E4
;

ðA:23Þ
f c f c f
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where the shorthand notation

Ec � eikcDxc=2; Ef � eikfDxf=2 ðA:24Þ

has been used.

At this point we have succeeded in showing that the vector Vj of Eq. (A.16), with R and T chosen as in

Eq. (A.23), is an eigenvector of Q on the non-uniform grid. The corresponding eigenvalue is 2ijKj=Dt. A
short calculation shows that Vj is also an eigenvector for M , Eq. (A.4), with eigenvalue
1� 2K2 þ 2ijKjð1� K2Þ. Since M evolves the discrete system by one time step, we see that

V n
j ¼ W eixnDt e�ikf jDxf þ Reikf jDxf

� �
; j < 0;

W eixnDt Te�ikcjDxc
� �

; j > 0:

�
ðA:25Þ

is a solution of the finite difference equations V nþ1
j ¼ MV n

j across the entire grid. Here, the complex fre-

quency x is given by the dispersion relation (A.8). The solution (A.25) represents a wave that travels from

the fine grid region to the coarse grid region. At the interface it splits into reflected and transmitted pieces.

The coefficient R is the reflection coefficient, and T is the transmission coefficient.

The results of this analysis can be checked numerically. For example, in Fig. 18 the solid lines show the

magnitude of the reflection coefficient calculated from Eq. (A.23). The squares and triangles display the

results of a numerical test, in which we modeled the propagation of a sine wave contained in a broad
Gaussian envelope,

/ðx; tÞ ¼ Ae�ðx�x0�tÞ2=w2

sin kðx� tÞ: ðA:26Þ

The initial data were obtained by discretizing / and d/=dt at t ¼ 0. The constant x0 was chosen so that

initially the wave packet was situated in the fine grid region, far from the interface. We set the Gaussian

half-width to w ¼ 63Dx, significantly larger than the longest wavelength shown in the figures. The mag-

nitude of R was obtained by evolving the wave packet past its interaction with the interface, typically about

1000 time steps, and then extracting from the numerical data the largest value of j/j in the reflected pulse.
The Courant factor for these numerical runs was Dt=Dxf ¼ 0:4.

The squares show raw numerical data. The deviation of these data from the analytical curves is due to

dissipation and dispersion of the wave pulse. Dissipation can be accounted for rather easily, using the
/h
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Fig. 18. Absolute value of the reflection coefficient for direct linear guard cell filling. The raw numerical data are shown as boxes, while

the triangles show the data corrected for dissipation.
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analytical result given in Eq. (A.12). The triangles show the numerical data with correction for dissipation.

The numerical and analytical results for the reflection coefficient are in excellent agreement, as seen in

Fig. 18.
The above analysis can be repeated for other choices of GCF. In particular, for the quadratic GCF of

Eqs. (19)–(21), the reflection and transmission coefficients are

R ¼ E2
f ð�1þ 6E2

f þ 3E4
f þ E2

cð�15þ 10E2
f � 3E4

f ÞÞ
3þ 6E2

f � E4
f � E2

cð3� 10E2
f þ 15E4

f Þ
;

T ¼ 2Ecð�3� 2E2
f þ 2E6

f þ 3E8
f Þ=Ef

3þ 6E2
f � E4

f � E2
cð3� 10E2

f þ 15E4
f Þ
;

ðA:27Þ

with Ec and Ef defined as before. Figs. 5–7 compare the reflection and transmission coefficients for linear,

direct linear, and quadratic GCF. From Fig. 5 we see that quadratic GCF produces a much smaller re-

flected wave than either linear or direct linear GCF. For example, at 20 fine grid points per wavelength,

linear (direct linear) GCF produces a reflected wave with amplitude about 5.6% (4.3%) that of the incident

wave. With quadratic GCF the reflected wave amplitude is only about 0.31% that of the incident wave. For

the transmitted wave, Fig. 7 shows that the phase error at 20 fine grid points per wavelength is smaller in

magnitude by more than a factor of 10 with quadratic GCF compared to linear or direct linear GCF. Fig. 6

shows, perhaps surprisingly, that direct linear GCF does the best job of keeping the magnitude of T close to
1 at wavelengths less than about 28Dxf . For longer wavelengths, k > 28Dxf , quadratic GCF is best. Note,

however, that with any of these choices of GCF, the deviation of jTj away from unity is relatively small.

Over the entire range shown in the graphs, k > 10Dxf , the maximum error for quadratic GCF is less than

1%. For the reflection coefficient, on the other hand, the maximum error for direct linear GCF is about

11%. For most situations the problem of spurious reflections at an interface will be more severe than the

problem of inaccurate wave transmission through the interface.

A.2.2. Discussion of guard cell filling

The results thus far indicate that quadratic GCF is generally better than either linear or direct linear

GCF at keeping the reflection coefficient small and the transmission coefficient close to unity. The question

naturally arises: can one do better than quadratic GCF? We will restrict our attention to rules for GCF that

use a three-point stencil. That is, the fine and coarse grid guard cell values V n
g and V n

G are obtained from

linear combinations of three grid points,

V n
G ¼ c1V n

1=2 þ c2V n
�1=2 þ c3V n

�3=2; ðA:28Þ
V n
g ¼ f1V n

1=2 þ f2V n
�1=2 þ f3V n

�3=2; ðA:29Þ

where c1, f1, etc. are constants.

The analysis of Section A.2.1 can be repeated with the guard cells defined as above. The resulting re-

flection and transmission coefficients are functions of the constants c1, f1, etc. Although there are certain

combinations of the constants that outperform quadratic GCF at low resolution, quadratic GCF is unique

in the following sense. If we consider the high resolution limit, in which kfDxf is small, quadratic GCF
yields

R ¼ 3
32
iðkfDxfÞ3 þOðkfDxfÞ4; ðA:30Þ
T ¼ 1� 3 iðkfDxfÞ3 þOðkfDxfÞ4: ðA:31Þ

32
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The magnitudes of the reflection and transmission coefficients behave like jRj ¼ OðkfDxfÞ3 and

jTj ¼ 1þOðkfDxfÞ4. For any other choice of constants c1, f1, etc., the reflection and transmission coeffi-

cients approach 0 and 1, respectively, more slowly (if at all) than for quadratic GCF. For example, for
direct linear GCF, we have

R ¼ 1
8
iðkfDxfÞ þOðkfDxfÞ2; ðA:32Þ
T ¼ 1þ 1
8
iðkfDxfÞ þOðkfDxfÞ2: ðA:33Þ

Thus, for high resolution, quadratic GCF is the best possible choice given the three-point stencil (A.28) and
(A.29). Because R and T approach 0 and 1 rapidly, as the third power of kfDxf , quadratic GCF performs

well at all resolutions.
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